Hydrogen Production via CH4 and CO Assisted Steam Electrolysis
نویسندگان
چکیده
Porous composite anodes consisting of a yttria-stabilized zirconia (YSZ) backbone that was impregnated with CeO2 and various amounts of metallic components including Cu, Co and Pd were fabricated. The performance of these anodes was then tested in a solid oxide water electrolysis cell under conditions where the anode was exposed to the reducing gasses H2, CH4 and CO. The reducing gasses were used to decrease the electrochemical potential of the cell and increase overall efficiency. The results of this study show that CuCeO2-YSZ anodes have low catalytic activity for the oxidation of CO and CH4 and are not very effective in lowering the cell potential while operating in the reducing gas assisted mode. The addition of Co to the CuCeO2YSZ anode resulted in a modest increase in the catalytic activity and enhanced the thermal stability of the anode. A Pd-C-CeO2-YSZ anode was found to have the highest catalytic activity of those tested and gave the largest reductions in the operating potential of the solid oxide electrolysis cell.
منابع مشابه
Analysis of the Performance of the Electrodes in a Natural Gas Assisted Steam Electrolysis Cell
The performance of solid oxide electrolysis (SOE) cells while operating in the natural gas assisted steam electrolysis (NGASE) mode was evaluated. The SOE cells used yttria-stabilized-zirconia (YSZ) as the oxygen ion conducting electrolyte, Co–CeO2–YSZ as the H2–H2O electrode, and Pd-doped CeO2 YSZ source as the CH4-oxidation electrode. The cell electrochemical performance was evaluated as a fu...
متن کاملThe Energy and Exergy Analysis of Integrated Hydrogen Production System Using High Temperature Steam Electrolysis with Optimized Water Path (RESEARCH NOTE)
In this research, solar-drived integrated Hydrogen production (HP) using high-temperature steam electrolysis (HTSE) is thermodynamically evaluated. This system includes an organic Rankine cycle (ORC), Rankine cycle, Brayton cycle, solar tower, and High Temperature Steam Electrolysis (HTSE). Solar energy supplies thermal energy. This heat source is applied for generating power. This energy is us...
متن کاملEffect of Sorbitol/Oxidizer Ratio on Microwave Assisted Solution Combustion Synthesis of Copper Based Nanocatalyst for Fuel Cell Grade Hydrogen Production
Steam reforming of methanol is one of the promising processes for on-board hydrogen production used in fuel cell applications. Due to the time and energy consuming issues associated with conventional synthesis methods, in this paper a quick, facile, and effective microwave-assisted solution combustion method was applied for fabrication of copper-based nanocatalysts to convert methanol to hydrog...
متن کاملSimultaneous high hydrogen content-synthesis gas production and in-situ CO2 removal via sorption-enhanced reaction process: modeling, sensitivity analysis and multi-objective optimization using NSGA-II algorithm
The main focus of this study is improvement of the steam-methane reforming (SMR) process by in-situ CO2 removal to produce high hydrogen content synthesis gas. Sorption-enhanced (SE) concept is applied to improve process performance. In the proposed structure, the solid phase CO2 adsorbents and pre-reformed gas stream are introduced to a gas-flowing solids-fixed bed reactor (GFSFBR). One dimens...
متن کاملAn Investigate on Power, Torque and Exhaust Gas Emission Variation: Effect of Hydroxy Gas Addition to Inlet Air of a SI Engine
Hydrogen has been known as a clean and suitable fuel to replace conventional fossil fuels. One of the common hydrogen production methods is using water electrolysis process. This method produces oxygen as well as hydrogen by ratio of 1:2. The aim of this work is to investigate the effects of inlet air enrichment by adding produced hydrogen and oxygen to an internal combustion engine. For this p...
متن کامل